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Let B"(j; P) be the nth Bernstein polynomial of a real function f(P) whose
domain is a triangle T. We show in this paper that if f(P) is continuous on T and
one of the inequalities Bn(j; P) ~ f(P) or B"(j; P) ~ Bh+ 1(j; P) holds for all
positive integer n and all points of T, then f cannot have a strict local maximum
at an interior point of T. © 1990 Academic Press, Inc.

1. INTRODUCTION

Let Bn(f; x) (n ~ 1) be the nth Bernstein polynomial of a real function
f(x) defined in [0,1]:

(1.1 )

where

(1.2)

i = 0, 1, 2, .." n. It is well known that, for a function f(x) convex in [0, 1J,

Bn(f; x) ~ Bn+ 1(f; x)
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(1.3)
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for all n? 1 and all XE [0,1] (by B. Averbach, see [2, p.1l5]) and hence,
by the convergence of Bn to f,

(1.4 )

for all n ? 1 and all x E [0, 1]. These results have been extended to include
a class of approximation formulas (by S. Karlin, see [5], for example).

Conversely, it has been shown by Kosmak [3] that the condition (1.3)
suffices to ensure the convexity of a twice continuously differentiable func
tion. Furthermore, it has been proved that if f(x) is continuous in [0, 1]
and the inequality (1.4) persists for all n, thenf(x) is convex (see [5], for
example). It is obvious that the last theorem implies Kosmaks theorem by
the convergence of the Bernstein approximation to f These two results are
called the converse theorems of convexity and have been extended to quite
a wide class of positive linear operators by Ziegler [5].

Efforts to extend all these results to multivariate Bernstein polynomials
were made a couple of years ago. Given is a triangle Twith vertices T[, T 2 ,

and T 3 , which will be called the domain triangle. A point Pin T, which has
the barycentric coordinates (u, v, w) with respect to T, will be written
as P = (u, v, w) in which nonnegative real numbers u, v, and w satisfy
u + v + w = 1. Let f(P) be a function defined on T. The nth Bernstein poly
nomial of f(P) over the domain triangle is given by

where

(
i j k)Bn(!; P) := L f -, -, - B7,j.k(P),

i+j+k=n n n n

n! .. k

B7,j.k(P) := Tlk' u'zlw ,
I.J. .

(1.5)

(1.6)

in which the nonnegative integers i, j, and k satisfy i + j + k = n. If f(P) is
continuous over T, written briefly as f E C(T), then

lim B n(!; P) = f(P)
n~oo

(1.7)

uniformly on T (see [4]).
For a convex function f(P) on T, Chang and Davis prove in [1] that

the sequence of the Bernstein polynomials is still decreasing as n goes to
infinity. This result stimulated the present authors to find some converse
theorems. It is impossible to have direct extensions of the converse
theorems of convexity for the univariate Bernstein polynomials to the
triangular case, as we have the following simple counter-example. Con-
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sider the standard triangle T with vertices (0,0), (1,0), and (0,1) in the
Cartesian plane. Let

f(x, y) := -xy,

its nth Bernstein polynomial is

Although the sequence of the Bernstein polynomials is decreasing and the
inequality

Bn(j; x, y) ~ f(x, y)

holds for all n and all (x, y) in the standard triangle T, the function - xy
is not convex in T as its Gaussian curvature is always negative. Note that
this function f does not attain local maximum inside the triangle T.

In the present paper, we prove the following two converse theorems of
the convexity for the triangular Bernstein polynomials:

THEOREM 1. If f E C( T) and the inequality

(1.8 )

holds for all natural numbers n and all points on T, then the function f(P)
does not attain strict local maximum inside the domain triangle.

THEOREM 2. Iff E C(T) and the inequality

(1.9)

holds for all natural numbers n and all points on T, then the function f(P)
does not attain strict local maximum inside the domain triangle.

By a strict local maximum f(Po), we mean that f attains a local maxi
mum at Po and is not a constant in any neighborhood of Po-

It is clear that Theorem 1 can be deduced from Theorem 2 by the con
vergence (1.7) for a continuous approximated function f Hence it suffices
to prove Theorem 2. As a simple consequence of Theorem 1 or Theorem 2,
we shall show that iff(P) is a continuous and piecewise linear with respect
to a triangulation of T, then each of (1.8) and (1.9) implies the convexity
of f(P) over T. Finally, we point out that the aforementioned converse
theorems of univariate Bernstein polynomials can be derived from the
present two theorems.
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2. LEMMAS

We begin with some definition. Points (iln, jln, kin), in which
i + j + k = n, are called the nodes of the nth partition Sn( T) of the domain
triangle T, and Sn(T) consists of n2 subtriangles, each of them has three
closest nodes as its vertices. The partition S4( T) is illustrated in Fig. 1.

Let Q := (p, q, r) be an arbitrarily given point inside the domain triangle,
i.e., p, q, r are positive with p + q + r = 1. Let B7,j,k := B7,j,k(Q) for brevity.
We assign each value B7,j,k to the corresponding node (iln, jln, kin) of
Sn(T). Six lemmas will be presented in this section. The first five of them
describe the value distribution of (n + 1)(n + 2)/2 real numbers B7,j,k with
respect to the assignment.

Set

IX := max(plq, qlp, plr, rip, qlr, rlq),

f3 := min(plq, qlp, plr, rip, qlr, rlq)·

It is easy to show that

B7+ 1, i-l,k
B7,j,k

jp

q(i + 1)
(i+ j=n-k). (2.1 )

From (2.1) it follows immediately that

LEMMA 1. We have

B7,j,k:::;; B7+ l,j-1,k'

B7,j,k ~ B7+ l,j-l,k'

LEMMA 2. For bE (0, plq), we have

if (i + 1)/j :::;;plq;

if (i+ 1)lj~plq·
(2.2)

FIGURE 1

(2.3 )
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if (i + 1)jj ~ (pjq - (j); and

Bnk~(I+f3(j)Bn 1 "-IkI,j, 1 T ,) ,

if (i + 1)!i~ (pjq + (j).

Proof Assume that (i + 1)jj~ (pjq - (j), by (2.1) then we have

Bn . ( )-1i+l,i-l,k=_J_E>- E_(j E
BZi,k i + 1 q c;/ q q

= 1+ (j (~ - (j ) ~ 1 > 1+ (jqjp ~ 1+ P(j.

Similarly, if (i + 1)jj~ (plq + (j), then

B7~~;-I'k ~ (pjq + (j) -1 plq = (1 + (jqlp)-1
i,j,k
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(2.4)

By permuting (i,j,k) and (p, q, r) in the same manner in (2.2), (2.3), and
(2.4) simultaneously, other inequalities can be obtained.

LEMMA 3. (1) ForkE(O,I,2, ...,n), we have

L BZj,k = B;(r);
i+i=n-k

(2) ifk~(n+l)(r-(j)-1andO<(j<r, then

BZ(r) < (1 + (j) -I BZ + 1(r);

(3) ifko~(n+l)(r-(j)-I,then

L: BZi,k < (1 + (j) (j -IBZk).
i+i+k~n

k S;ko

(2.5)

(2.6)

(2.7)

Proof The equality (2.5) comes from straightforward calculation. For
the proof of (2.6), note that

BZ+1(r) n-k r ( k+ 1)(k+ 1)-1 r
BZ(r) k + 1 1 - r = 1 - n + 1 n + 1 1 - r

(l-r+(j)r
~ (r-(j)(1-r» 1 +15.
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The condition for (2.6) can be rewritten as (k + 1)j(n + 1) ~ r - (j. By
using (2.6) repeatedly, we obtain

where s = 1, 2, 3, ... By (2.5) we get

kQ

L B7,j,k= L B~(r)
i+j+k~n k=O
k~ko

00

<B~o(r) L (1+(j)-k=(1+(j)b-1B~o(r).
k=O

LEMMA 4. For arbitrarily fixed I) E (0, 1), assume that

n ~ I)-l(p-l +q-l + r- 1).

Let B~*.j*,k* be the maximum of all B7,j,k with i + j + k = n, we must have

i*In > p( 1- I)), j*In > q(1- 8 ), k*ln > r(l- 8). (2.8)

Proof Suppose that at least one of (2.8) does not hold for a triple
(i,j,k), we shall show that the corresponding BZ j •k is not the maximum.
Without loss of generality, say that i ~ np(1 - I)). Then we have

np( 1- I)) + j + k ~ i + j + k = n(p +q + r),

hence

j +k ~ n(pe +q +r).

From (2.9) we conclude that among the following two inequalities

(2.9)

j~ n(q + I)p/2) and k~n(r+ep/2),

at least one of them is true. Say, for example, the first one holds, then we
have

j~ n(q + ep/2) > nq > 1.

From (2.10) we know that B7+ l,j-l,k makes sense.
On the other hand, we have n > (ep ) - 1, thus

i + 1 < np( 1~ e) + npe = np,

(2.10)

(2.11)
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The combination of (2.10) and (2.11) gives (i+ l)lj<plq, hence we get by
Lemma 1

this means that BZJ,k is not the maximum. This completes the proof of
Lemma 4.

For e E (0, 1), we define

Q o := {(u, v, w): u~ p(l-e), v ~q(l-e), w~r(l-e), u+ v + w= 1}.

This is a closed triangle contained by the domain triangle T and containing
the point Q as its interior point. Each side of Q e is parallel to the corre
sponding side of T. It is clear that for 0< <5 < e < 1, Q o is contained by !Je .

It is reasonable to define that Q 0 = Q and that Q 1 = T (Fig. 2).
The Lemma 4 can be restated geometrically as follows. For e E (0, 1) and

n ~ (lip + 11q + 1Ir)/e, if BZJ,k(Q) is the largest, then we must have
(iln, lin, kin) E Qe'

LEMMA 5. For any eE (0, 1) there exists J E (0, c) and a positive integer
no such that for n ~ no, if Uln, j/n, kin) E Q e and (ioln, join, koln) E Q in then

BZj,k(Q) < B70,Jo,ko(Q)·

Proof For a given e E (0, 1), it is always possible to find a J E (0, c) such
that

(2.12)

where

Then we take no sufficiently large such that

(J <5no> 2.

FIGURE 2

(2.13 )

(2.14)
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We are going to show that such (j and no can meet our requirement. Let
n~no and (ijn,j/n,k/n)EQe. Without loss of generality, we may assume
that

i < np(l- 8).

Just as in the proof of Lemma 4, we can assume that

j ~ n(q + p8/2).

Consider the following sequence

where

So :=max{s: i +s < np(l- 8/2), j-s > nq}.

It is clear that So = min(sl' S2), where

Sl := max{s: i + s < np(l- 8/2)},

S2 :=max{s:j-s>nq}.

By the definition of Sl and (2.15), we get

S1 ~ np( 1- 8/2) - i-I> np( 1- 8/2) - 1- np(1 - 8),

so that

Sl > np8/2-1.

Similarly, by the definition of S2 and (2.16), we have

S2 ~ j- nq-l ~ n(q+ p8/2) - nq-l,

hence

S2 ~ npf,/2 - 1.

From (2.17) and (2.18) it follows that

so=min{sl' S2} ~np8/2-1.

From the definition of So we see that

(2.15)

(2.16)

(2.17)

(2.18 )
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i +S + 1 p pc p efJ
---<---<---
j-s q 2q q 2'
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(2.19 )

for s = 0, 1, ..., So - 1. Comparing (2.19) with the first result of Lemma 2, we
obtain

Inductively, we get

BZj,k < (1 + e[32/2)-50 B7+so,j- so,k

:( (1 + e[32/2)-(np6/2- 1) B7*.j*.k*'

in which B;'*,j*,k* denotes the maximum of all B;'~j,k' Since p> 40' by (2.13)
and nae > noafJ > 2 by (2.14), we have

npe/2 - 1> nae,

therefore

We shall point out that if n ~ no then

Win, j*/n, k*/n) EQb'

In fact, by (2.13) and (2.14) it follows that

no> (l/p + l/q + l/r) 8/fJ,

hence if n ~ no we conclude by Lemma 4 that

(i*/n, j*/n, k*/n) EQ b/8 c Do'

Let (i/n, j/n, k/n) be any point in Q b, so that

(2.20)

Since

i ~ np(l - fJ), j~ nq(l- fJ), k ~ nr(l - fJ).

n(p+q+r) = i+j+k~ i +nq(l-fJ) +nr(l-fJ),

we have immediately

np(l- fJ):( i:( n[p + (q + r) fJ],
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equivalently
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np( 1 - 6) ~ i ~ n [p( 1- 6) + 6]. (2.21 )

Note that there are similar inequalities for j and k. If (i'ln, j'jn, kiln) is
another point in Q b, then by (2.21) we have

Ii - i'J ~ n6. (2.22)

Consider two adjacent nodes in the triangle Qb' Without loss of generality,
say (iln,jln,kln) and ((i+l)ln, (j-1)ln, kin). The ratio of the two
Bernstein basis polynomials associated with these two points is given by
(2.1), namely jpl(i + 1) q, which is less than

jp n[q+(p+r)15]p 1+215a
-~ ~.
iq np(l-15)q 1-15

It gives

(
1 +215a)Bn . < Bn..1+ I,J-l,k 1_ (j I,J,k (2.23 )

(2.24)

Any two nodes of Sn(T) can always be connected by a broken line formed
by joining two neighboring nodes with line segment, and the broken line
passes through at most n + 1 nodes. Keep this fact in mind, we know that
if a point (ioln,joln, koln) is in Qb, by using (2.23) repeatedly and by
(2.22), then we obtain

(
1+ 2(jiX) nb

B7*,J*,k* ~ 1_ (j B%,Jo,ko'

Combining (2.20) and (2.24), we get

(2.25)

In virtue of (2.12), it comes from (2.25) that

(2.26)

The proof of Lemma 5 is completed.

LEMMA 6. Let LIde T be a triangle with sides parallel to that of the
domain triangle T, and

d := area(LI d),
area(T)
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Nn(d) := the number of nodes of Sn(T) which belong to Lid' There exists a
positive integer no such that if .'1 ~ no then

(2.27)

Proof Note that the number of nodes in Sn(T) is (.'1 + 1)(.'1+ 2)/2. The
desired result comes from the simple fact

. 2Nn (d)
hm . = d> dl2 > O.
n~co (.'1+ 1)(.'1+2)

3. PROOF OF THEOREM 2

Suppose, contrarily, the continuous function f attains a strict local maxi~
mum at a point Q = (p, q, r) interior to the domain triangle. Without loss
of generality, we assume that f(Q)=O, hence there exists eE(O, 1) such
that f is nonpositive on the triangular region Q c' By Lemma 5, there are a
positive integer .'1 1 and i5 E (0, e) such that if n ~ n1, (i/n, lin, kin) E Q B' and
Uoln, join, koln) E Q ij then

(3.1 )

Note that all these Bernstein basis polynomials are evaluated at the point
Q. The "strictness" of the local maximum insures that there is a triangular
region Lid (cQ,j) which has sides parallel to that of T, on which the
supremum of f, denoted by (- h), shall be negative. By Lemma 6, there
exists a positive integer .'1 2 such that the number of the nodes (of Sn( T))
which belong to Lid will be greater than n2dl4 for .'1 ~ .'1 2 , Let

L := supremum If(P)I.
PET

Split the sum in (1.5) into the following three parts

in which the first, second, and third are the summations over the nodes
outside QO' inside Lid' and on Qc\Li d, respectively. Let

an :=max{B7,j,k: (i/n,Jln, kln)EQc}'

bn :=min{B7,J,k: (i/n,jl.'1, kln)EQij}'
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From (3.1) we know that an < bn for n ~ n1 • By the definition of Q n it is
clear that

I BZJ,k~ I + I + I (3.2)
(iln,Jln,kln)EQ, i<np(l-E) J<nq(l-E) k<nr(l-E)

The first summation on the right-hand side of (3.2) can be rewritten as

I BZJ,k'
i+ J+k~n,

i~ io

where

io :=max{i: i<np(1-s)}.

Let

K:=max {~,~,~}.
ps qs rs

If n ~ K, then io < np(1 - s) < (n + 1) p(1 - s) = (n + 1)(p - ps/2) 
(n + 1) ps/2, thus io< (p - ps/2)(n + 1) -1. By Lemma 3, we obtain

I BZJ,k~[1+2/(ps)J I BZJ,k~2n(1+K)an;
i < np(l- E) J+k ~ n- io

the same upper bound applies to the second and the third summation in
(3.2). Hence

I BZJ,k ~ 6n(1 + K) an'
(iln, Jln, kin) E Q,

so that

(3.3 )

It is clear that

(3.4 )

Furthermore, since

I BZJ,k ~ n2dbn/4,
(i/n, Jln, kin )f'iL1d

we see that

(3.5)
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From (3.3), (3.4), and (3.5) it follows that

Bn(f; Q)< II1 1+I2

~ 6L(1 + K) nan - n2dbnh/4 < nbn [6(l + K) L - ndh/4].
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If n ~ max{nj, n2 , K, 24(1 + K)L/(dh)}, then Bn(f; Q) < 0, an impossi
bility. The proof of Theorem 2 is completed.

4. COROLLARIES

COROLLARY 1. Let f(P) be continuous on domain triangle T, and
piecewise linear with respect to a finite triangulation of T. Iff satisfies the
inequality

(4.1)

or

(4.2)

for all positive integer n and all PET, then f must be convex over T.

Proof Since the Bernstein operator reproduces linear functions, iff(P)
satisfies (4.1) or (4.2) then so doesf(P) + g(P), where g(P) is a linearfunc
tion. Suppose, contrarily, f is not convex over T; a linear function g can be
found such that f + g assumes a strict local maximum at some point
interior to T, a contradiction by Theorem 1 and Theorem 2.

It is obvious that Theorem 1 and Theorem 2 are still valid for univariate
case, i.e., the Bernstein polynomials. From the univariate versions, we can
derive the two well-known results of Bernstein polynomials mentioned
already in the Introduction, we present them here as

COROLLARY 2. Let f(x) be a continuous function on [0,1]. If f(x)
satisfies

(4.3 )

or

(4.4 )

for all positive integer n and all x E [0, 1], then f(x) must be convex in this
interval.
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Proof Iff is not convex in the interval, there exist two points u < y in
(0, 1) such that

f[(u + y)/2] > [f(u) + f(y)]/2.

Let

g(x) :=f(u)(y-x)/(y-u)+ f(y)(x-u)/(y-u)

and consider

F(x) := f(x) - g(x).

It is clear that F(u)=F(y)=O and

F[(u + y)/2] > O.

Let m be the maximum of F(x) on the interval [u, y], hence we have
m > O. Suppose that v is the leftmost point in (u, y) such that F(v) = m, the
existence of v follows from the continuity of F. We now see that F assumes
a strict local maximum at the point v. This wi11lead to a contradiction in
the same way as we saw in the proof of Corollary 1.

The contribution of this paper has been extended to Bernstein polyno
mials over higher dimensional simplices by Yang Lu and the present
authors. A paper had been submitted for publication in 1987. When we
revised the present paper, we received a preprint by Wolfgang Dahmen and
Charles A. Michelli, titled "Convexity and Bernstein Polynomials on
k-Simploids." They get a weaker extension based on semigroup techniques
and the maximum principle for second order elliptic operators, a quite
different approach from ours.

The authors are indebted to referees's comments which enabled us to
make a correct presentation of historical remarks.
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